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Background Concepts

I Graph Coloring

I Chordal (triangulated) graphs

I Triangulations (chordal completions)

I Weakly chordal graphs

I Treewidth
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Acyclic Coloring

Proper vertex coloring without bichromatic cycles
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Acyclic Coloring – No Bichromatic Cycles
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ACYCLIC COLORINGS OF PLANAR GRAPHS t 

BY 

BRANKO GR~NBAUM 

ABSTRACT 

A coloring of the vertices of a graph by k colors is calle:l acyclic provided 
that no circuit is bichromatic. We prove that every planar graph has an acyclic 
coloring with nine colors, and conjecture that five colors are suN:lent. Other 
results on related types of colorings are also obtained; some of them g~neralo 
ize known facts about "point-arboricity'. 

1. Introduction 

Let G denote a graph with vertex set V; we shall assume th a G contains no 

1- or 2-circuits (that is, loops or multiple edges). A k-coloring of G is a parti t ion 

V = V1 u . . .  u Vk of the vertices of  G into k pairwise disjoint sets (called colors) 
so that adjacent vertices are in different sets (have different colors). A k-coloring 

of  G is called acyclic provided that every subgraph of G spanned by vertices of  

two of  the colors is acyclic (in other words, is a forest). If  G is the graph of  the 

octahedron then the 4-coloring of G indicated in Fig. 1 by the numerals placed near 

the vertices is not acyclic (since the colors 1 and 2 span a graph which is not 

4 

Fig. 1. 

t Research supported in part by the Office of Naval Research under Grant N00014--67- 
A-0103-0003. 
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OLORINGS OF PLANA 
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The conjecture of B. Griinbaum on existing of admissible vertex coloring of every planar 
graph with 5 colors, in which every bichromatic subgraph is acyclic, is proved and some 
corollaries of this result are discussed in the present paper. 

1. Introduction and statement of the result 

In 1973 Griinbaum has published a large paper [5] on graph colorings, in which 
various restrictions were given to the type of all 2- and 3-chromatic subgraphs. 
The main attention in this paper was attached to the planar graphs. 

Definition 1. An admissible coloring of a graph is called acyclic (in narrow sense), 
if every bichromatic subgraph, induced by this coloring, is a forest (acyclic graph). 

The acyclic coloring of a graph should obviously be considered only for loopless 
graphs without multiple edges, which is assumed below. 

The first example of a planar graph, which is not acyclically 4-colorable, has 
been constructed by Griinbaum [5]. Afterwards Wegner has constructed [ 121 a 
planar graph, which possess a cycle in every 2-chromatic subgraph in every 
admissible 4-coloring. 

Definition 2. Graph G is called k-degenerated, if each subgraph H of G contains 
a vertex, which induced degree is less than k, i.e. 

W(G) = max min s&u)+ 1 c k, 
c;‘c Gc E V(G’! 

where W(G) is known as Vizing-Wilf’s number. 
In particular, a graph is l-degenerated, iff it contains no edges, and is 2- 

degenerated, iff it is a forest. 
Kostochka and Melnikov have shown [S] (answering Grunbaum’s question), 

that graphs, acyclically not colorable with 4 colors, can be found even a,mong 
3-degenerated bipartite planar graphs. 
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Acyclic Coloring, Algorithmically

Acyclic Coloring (AC)
Instance: Graph G , positive integer k .
Question: Is there an acyclic coloring of G that uses ≤ k colors?

NP-Complete to determine whether χa(G ) ≤ 3 (Kostochka 1978)

If ∆(G ) ≤ 3, then G can be acyclically colored using 4 colors or fewer
in linear time. (Skulrattanakulchai 2004)
If ∆(G ) ≤ 5, then G can be acyclically colored using 9 colors or fewer
in linear time. (Fertin & Raspaud 2008)



Acyclic Coloring, Algorithmically
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THE CYCLIC COLORING PROBLEM AND ESTIMATION
OF SPARSE HESSIAN MATRICES*

THOMAS F. COLEMANf AND JIN-YI CAIn"

Abstract. Numerical optimization algorithms often require the (symmetric) matrix of second derivatives,
V2f(x). If the Hessian matrix is large and sparse, then estimation by finite differences can be quite attractive
since several schemes allow for estimation in much fewer than n gradient evaluations.

The purpose of this paper is to analyze, from a combinatorial point of view, a class of methods known
as substitution methods. We present a concise characterization of such methods in graph-theoretic terms.

Using this characterization, we develop a complexity analysis of the general problem and derive a roundoff
error bound on the Hessian approximation. Moreover, the graph model immediately reveals procedures to
effect the substitution process optimally (i.e. using fewest possible substitutions given the differencing
directions) in space proportional to the number of nonzeros in the Hessian matrix.

Key words, graph coloring, estimation of Hessian matrices, sparsity, differentiation, numerical differences,
NP-complete problems, unconstrained minimization

AMS(MOS) subject classifications. 65K05, 65K10, 65H10, 68L10

1. Introduction. We are concerned with the estimation of a large sparse symmetric
matrix of second derivatives V2f(x) for some problem function f: Rn-> R 1. In par-
ticular, we note that the product V2f(x) d can be estimated, for example, by forward
differences

(1.1) Vf(x) d=[Vf(x+d)-Vf(x)]+o(lldll).
When the structure of 7Zf(x) is known, then usually a few well chosen differencing
directions d,. ., d, affords the recovery of estimates of all nonzeros of Vf(x). Let
us denote our estimate by H. We will assume that the sparsity pattern of H is known;
the diagonal elements are specified as nonzero; H is symmetric. (Restricting the
diagonal to be zero-free is reasonable in many contexts: In particular, a minimizer of
f usually possesses a positive definite Hessian matrix.) We will be concerned with
methods that use differencing directions dl, d,..., d, that are based on a partition
of columns C,. ., C,. In particular, let S denote the set of columns in group C
and let h be the steplength associated with column i, 1,. ., n. Finally, define

(1.2) d= he
iS

for k 1,..., p, where e is the ith column of the identity.
There has been considerable work recently concerned with this problem, especially

with trying to make p as small as possible. Curtis, Powell, and Reid 1974] suggested
a method, CPR, for the unsymmetric problem. Their idea was to build groups of
structurally independent columns in a left-to-right greedy fashion. (Two columns
(vectors) x, y are structurally independent if xi * yi =0, for all i.) It is easy to see that
such a p-partition allows for the estimation of a matrix with p differencing directions.
Specifically, let C1, Cp be a partition of the columns of H where each group
consists of structurally independent columns. Then, if [Vf(x + dk)- Vf(x)]i 0 it
follows that there is exactly one column j in group Ck with Hj a designated nonzero

* Received by the editors October 10, 1984, and in revised form April 24, 1985. This work was supported
in part by the Applied Mathematical Sciences Research Program (KC-04-02) ofthe Office of Energy Research
of the U.S. Department of Energy under contract DE-AC02-83ER13069.

" Computer Science Department, Cornell University, Ithaca, New York 14853.
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↑ NP-complete even when restricted to bipartite graphs



Acyclic Coloring, Algorithmically

Chordal Graphs

I Every proper coloring is also an acyclic coloring
(in particular, χa(G ) = χ(G ) = ω(G )).
(Bodlaender et al. 2000, Gebremedhin et al. 2009)

I Chordal graphs can be colored in O(n + m) time.

Cographs (L. 2009)

Also known as the P4-free graphs

I The cographs are exactly the graphs for which every acyclic
coloring is also a star coloring.

I An optimal acyclic (and star) coloring of a cograph can be
found in O(n) time (if a cotree is given as part of the input).
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Triangulating Colored Graphs

Definition (φ-triangulatable)

Let φ be a proper coloring of a graph G . G is φ-triangulatable if
there exists a triangulation H of G such that φ is a proper coloring
of H.



Triangulating Colored Graphs, Algorithmically

Triangulating Colored Graphs (TCG)
Instance: Graph G and a proper coloring φ of G .
Question: Is G φ-triangulatable?

This problem is hard (Bodlaender et al. 1992). TCG is. . .

. . . NP-complete even when each color class has exactly two vertices.

. . . W [t]-hard for all t ∈ N.



Weakly Chordal Graphs

Definition
A graph is weakly chordal if it contains no induced hole or antihole
on five or more vertices.

··
·

··
·

hole antihole

Forbidden induced subgraphs for weakly chordal graphs.



Weakly Chordal Graphs

Lemma
If φ is a proper coloring of a weakly chordal graph G , then an edge
uv ∈ E (G ) is contained in a bichromatic cycle if and only if uv is
contained in a bichromatic C4.
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The Main Result

Theorem
If φ is a proper coloring of a weakly chordal graph G , then φ is an
acyclic coloring of G if and only if φ is a proper coloring of some
triangulation of G .

Proof.
(“If”): Trivial.
(“Only if”): Show that G can be triangulated without creating a
bichromatic cycle.



Tools – Two-Pairs

Definition (Two-pair)

A pair {x , y} of distinct, non-adjacent vertices is a two-pair if
every induced path from x to y consists of exactly two edges.

Theorem (Hayward, Hoàng, and Maffray 1989)

If G is a weakly triangulated graph, then every induced subgraph
of G that is not a clique contains a two-pair.



Tools – Separators

Definition
Let G be a connected graph. S ⊂ V (G ) is a. . .

separator if G − S is disconnected.

x-y -separator if x and y are contained in distinct components of
G − S.

clique separator if G [S ] is a clique.

Lemma
Let G be a graph with clique separator S and let φ be a proper
coloring of G . G is φ-triangulatable if and only if G [S ∪ R] is
φ-triangulatable for every connected component R of G − S .



The Key Lemma

If φ is an acyclic coloring of a graph G with two-pair {x , y}, then
either φ(x) 6= φ(y) or φ(u) 6= φ(v) for all u, v ∈ N(x) ∩ N(y).

Proof.

x y

φ(x) 6= φ(y)

1x 2 y

φ(u) 6= φ(u)
x y

1 2

x

1 2

y

1 2



Connecting a Two-Pair

Lemma (Spinrad and Sritharan, 1995)

If {x , y} is a two-pair in a graph G , then G is weakly chordal if
and only if G + xy is weakly chordal.

Lemma
Let φ be an acyclic coloring of a graph G . If {x , y} is a two-pair in
G such that φ(x) 6= φ(y), then φ is an acyclic coloring of G + xy .



Connecting a Two-Pair

Lemma
Let φ be an acyclic coloring of a graph G . If {x , y} is a two-pair in
G such that φ(x) 6= φ(y), then φ is an acyclic coloring of G + xy .

Proof.

1x 2 y

31w 2 z



Completing N(x) ∩ N(y)

Lemma
If {x , y} is a two-pair in a weakly chordal graph G , then the graph
obtained by turning N(x) ∩ N(y) into a clique is weakly chordal.

Proof.

v

u

t

z

w

··
·

u

t

w

v

z
··
·

y

The addition of edge uv cannot create a hole.



Completing N(x) ∩ N(y)

Lemma
If {x , y} is a two-pair in a weakly chordal graph G , then the graph
obtained by turning N(x) ∩ N(y) into a clique is weakly chordal.

Proof.
tu

v w

··
·

··
· u

t
v

w

y

The addition of edge uv cannot create a antihole.



Completing N(x) ∩ N(y)

Lemma
Let {x , y} be a two-pair in a weakly chordal graph G and let
S = N(x) ∩ N(y). If φ is an acyclic coloring of G such that
φ(u) 6= φ(v) for all u, v ∈ S , then φ is an acyclic coloring of GS .

Proof. y

1

2
1

2

We’ve shown that adding edge uv cannot create a hole or an antihole;
we still need to show that it cannot create a bichromatic C4.
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Algorithms

Our algorithm (our proof, really) is useless

Triangulating Colored Graphs
: All we have to do is check whether φ is an acyclic coloring. This can
be done in polynomial (linear?) time.

Triangulating Colored Graphs
Just as simple, but not as obvious...



Treewidth

Definition (Treewidth)

The treewidth tw(G ) of a graph G is

min{ω(H) | H is a triangulation of G} − 1.

The Key: chordal graphs are perfect!

Theorem (Bouchitté and Todinca 1999)

Treewidth can be solved in polynomial time O(n6) on weakly
chordal graphs.

Corollary

Every weakly chordal graph G satisfies χa(G ) = tw(G ).

Corollary

Acyclic Coloring can be solved in polynomial time on weakly
chordal graphs.
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Constructive Algorithms

Note: given tw-optimal triangulation we can find an optimal acyclic
coloring in O(n + m) time (this is coloring chordal graphs).

Theorem
If C is a subclass of the weakly chordal graphs for which Treewidth
can be solved constructively in fC(n,m) time for every G ∈ C, then an
optimal acyclic coloring can be constructed in O(fC(n,m) + n + m)
time for every G ∈ C.
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Open Problems

Open Problems

I Characterize the graphs for which φ acyclic ⇔ G is
φ-triangulatable.

I Can we beat the best known algorithm for treewidth (and thus
acyclic coloring) on weakly chordal graphs?

I O(n) time constructive algorithm for (q, q − 4) graphs

I O(n) time constructive algorithm for distance-hereditary graphs

I Can Acyclic Coloring be solved in polynomial time on
graphs with bounded treewidth?



Thank You!

Questions?
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